Lévy-frailty copulas

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frailty Models and Copulas: Similarities and Dif- ferences

Copulas and frailty models are important tools to model bivariate survival data. Equivalence between Archimedean copula models and shared frailty models, e.g., between the Clayton-Oakes copula model and the shared gamma frailty model, has often been claimed in the literature. In this note we show that, in both models, there is indeed the well known equivalence between the copula functions; the ...

متن کامل

On Generators in Archimedean Copulas

This study after reviewing  construction methods of generators in Archimedean copulas (AC),  proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.

متن کامل

Lévy copulas: review of recent results

We review and extend the now considerable literature on Lévy copulas. First, we focus on Monte Carlo methods and present a new robust algorithm for the simulation of multidimensional Lévy processes with dependence given by a Lévy copula. Next, we review statistical estimation techniques in a parametric and a non-parametric setting. Finally, we discuss the interplay between Lévy copulas and mult...

متن کامل

Characterization of dependence of multidimensional Lévy processes using Lévy copulas

This paper suggests to use Lévy copulas to characterize the dependence among components of multidimensional Lévy processes. This concept parallels the notion of a copula on the level of Lévy measures. As for random vectors, a kind of Sklar’s theorem states that the law of a general multivariate Lévy process is obtained by combining arbitrary univariate Lévy processes with an arbitrary Lévy copu...

متن کامل

DUCS copulas

Copulas [18] link univariate marginal distribution functions into a joint distribution function of the corresponding random vector. In this paper we will deal with bivariate copulas only. Recall that a function C : [0, 1] → [0, 1] is a (bivariate) copula whenever it is grounded, C(x, y) = 0 whenever 0 ∈ {x, y}, it has neutral element 1, C(x, y) = x∧y, whenever 1 ∈ {x, y} and it is 2-increasing,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2009.01.010